PR XII (02) 17 MATHEMATICS (New)

Inter Part-II (Fresh/Reappear)

Note: Time allowed for Section – B and Section – C is 2 Hours and 40 minutes.

Section – B

Marks: 50

- Q-II Answer any TEN parts. Each part carries FIVE marks.
 - 1. Evaluate Limit $\frac{a^x 1}{x}$, a > 0
 - 2. Use first principle rule to determine the derivative of $f(x) = \frac{5}{4x-3}$
 - 3. Find $\frac{dy}{dx}$ when $y = \frac{1 + Tan 2x}{Co \sec 3x}$
 - 4. Find an equation of the tangent line to the curve Sin(x y) = xy at $(0, \pi)$
 - 5. Evaluate the limit $\lim_{t\to 0} \left[\frac{te^t}{1-e^t} i + \frac{e^{t-1}}{\cos t} j \right]$
 - 6. Use suitable substitution to evaluate $\int \frac{dx}{x^2 + 16}$
 - 7. Evaluate $\int_{-1}^{7} \frac{x}{\sqrt{x+2}} dx$
 - 8. Find the equation of the line that passes through the points A(3,1) and B(-1,3)
 - 9. Find the equation of the circle which contains the points (2,6), (6,4) and has its centre on the line 3x + 2y 1 = 0
 - 10. For what value of C the line x y + c = 0 will touch the ellipse $\frac{x^2}{4} + \frac{y^2}{1} = 1$
 - 11. Solve the differential equation $y \frac{dy}{dx} + xy^2 x = 0$
 - 12. If $U = f\left(\frac{y}{x}\right)$ then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$
 - 13. Use Simpson's rule to approximate the value of the definite integral $\int_{2}^{4} x^{2} dx$, n = 3.

Section – C Marks: 30

Note: Attempt any THREE questions. Each question carries equal marks.

- Q-III (a) Find the composite function f(g(x)) and g[f(x)] for $f(x) = x^2 + 1$ and $g(x) = 1 x^2$
 - (b) Find the critical values of the function $f(x) = 2x^3 3x^2 72x + 15$
- Q-IV (a) Evaluate $\int \frac{3x+5}{x^2+2x-3} dx$
 - (b) Find the area of the triangular region whose vertices are A(-1, -2), B(2,5), C(5,2)
- Q-V (a) Show that the angle in the semi circle of the circle $(x h)^2 + y^2 = a^2$, h = 1, a = 2 is a right angle.
 - (b) Write the equation of the hyperbola with vertices at (2, -2), (-4, -2) and that passes through the point with coordinate (5,1)..
- Q-VI (a) Transform to axes inclined at an angle 45° to the original axes of the conic $x^2 y^2 = a^2$
 - (b) Find the centroid of the triangle ABC whose vertices are A(1,4), B(2,6), C(3,-1)